Detalhes bibliográficos
Ano de defesa: |
2003 |
Autor(a) principal: |
Bezerra, Débora de Jesus |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-17012005-114350/
|
Resumo: |
O objetivo deste projeto é o estudo de técnicas numéricas robustas para aproximação da solução de leis de conservação hiperbólicas escalares unidimensionais e bidimensionais e de sistemas de leis de conservação hiperbólicas. Para alcançar tal objetivo, estudamos esquemas conservativos com propriedades especiais, tais como, esquemas upwind, TVD, Godunov, limitante de fluxo e limitante de inclinação. A solução de um sistema de leis de conservação pode exibir descontinuidades do tipo choque, rarefação ou de contato. Assim, o desenvolvimento de técnicas numéricas capazes de reproduzir e tratar esses comportamentos é desejável. Além de representar corretamente a descontinuidade os esquemas numéricos têm ainda uma tarefa mais árdua; aquela de escolher a solução singular correta, a chamada solução entrópica. Os métodos de Godunov, limitantes de fluxo e limitantes de inclinação são técnicas numéricas que possuem as características apropriadas para aproximar a solução entrópica de uma lei de conservação. |