Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Rocha Filho, Geraldo Pereira |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-25092014-143614/
|
Resumo: |
Determinar quais são os aparelhos eletrônicos de uma residência que possuem maior influência na conta de luz não é tarefa trivial. As Redes de Sensores Sem Fios (RSSF) auxiliam os usuários nessa tarefa, permitindo descobrir se há algum tipo de desperdício no ambiente monitorado e assim, auxiliá-los a fazer as devidas correções. Por isso, é fundamental usar nas smart grids métodos que detectam novidades, também conhecido como anomalias , de forma individual e autônoma, para os usuários quando algo anômalo surge no consumo de energia dos equipamentos eletrônicos. Tais anomalias podem surgir, por exemplo, quando um equipamento consome energia acima do esperado, o que pode indicar um defeito. Nesse contexto, este trabalho propõe um método inteligente, nomeado como Novelty Detection Power Meter (NodePM), para detectar as novidades no consumo de energia dos equipamentos eletrônicos monitorados por uma smart grid. O NodePM detecta as novidades considerando a entropia de cada equipamento monitorado, a qual é calculada com base em um modelo de cadeia de markov que é gerado através de um algoritmo de aprendizado de máquina. Para tanto, o NodePM é integrado a uma plataforma de monitoramento remoto de consumo de energia, que consiste de uma RSSF associada a uma aplicação em nuvem. Para validar o desempenho do NodePM foram feitos experimentos utilizando a análise de variância e testes paramétricos e não-paramétricos. Os resultados de tais experimentos, obtidos mediante a análise estatística, evidenciou a viabilidade do NodePM na plataforma desenvolvida |