Formação de mulita (3Al2O3.2SiO2) \"in situ\" a partir de diferentes tipos de sílicas amorfas sintéticas (SAS\'s)

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Fernandes, Leandro
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18158/tde-24092014-191301/
Resumo: Em cerâmicas refratárias, a formação de mulita (3Al2O3.2SiO2) \"in situ\", a partir da reação entre alumina e sílicas amorfas sintéticas (SAS´s) aumenta a resistência ao choque térmico e à corrosão destes materiais. Essa reação é fortemente afetada pelas características físico-químicas e morfológicas das SAS´s. Este estudo comparou a formação de mulita\"in situ\" a partir da combinação de alumina calcinada ultrafina (α-Al2O3) com quatro tipos de SAS´s obtidas por diferentes processos de sínteses (precipitação de silicato de sódio, extração da cinza da casca do arroz, extração da casca do arroz e precipitação de vapor de silício elementar) e com características variadas. Inicialmente, esses quatros tipos de SASs foram caracterizados em relação às suas propriedades físico-químicas, microestrutura e morfologia. Em seguida, após mistura com alumina, compactação e sinterização (1100-1500°C) assistida por dilatometria, as amostras foram caracterizadas em relação à sua porosidade, densidade, módulo elástico, resistência à flexão, microestrutura e fases presentes. Verificou-se que as propriedades das estruturas finais foram fortemente afetadas pela mudança de SAS´s. De forma geral e em comparação com as amostras de referência (100% alumina ou 100% mulita pré-formada por eletrofusão), houve significativo ganho de rigidez e tensão de ruptura em menores temperaturas e grande redução de porosidade final. Valores de tensão de ruptura e módulo elástico da ordem de 114 MPa e 308 GPa foram obtidos, respectivamente. A correlação das propriedades obtidas com as características prévias das sílicas mostrou que a área superficial e o volume de poros internos das partículas afetaram mais o ganho de rigidez e redução de porosidade do que o tamanho médio das partículas. Além desse aspecto, a presença de fases de baixo ponto de fusão (em especial nas amostras com microssílica) também contribuiu fortemente para densificação.