Métodos de programação quadrática convexa esparsa e suas aplicações em projeções em poliedros

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Polo, Jeinny Maria Peralta
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-19042013-140124/
Resumo: O problema de minimização com restrições lineares e importante, não apenas pelo problema em si, que surge em várias áreas, mas também por ser utilizado como subproblema para resolver problemas mais gerais de programação não-linear. GENLIN e um método eficiente para minimização com restrições lineares para problemas de pequeno e médio porte. Para que seja possível a implementação de um método similar para grande porte, é necessário ter um método eficiente, também para grande porte, para projeção de pontos no conjunto de restrições lineares. O problema de projeção em um conjunto de restrições lineares pode ser escrito como um problema de programação quadrática convexa. Neste trabalho, estudamos e implementamos métodos esparsos para resolução de problemas de programação quadrática convexa apenas com restrições de caixa, em particular o clássico método Moré-Toraldo e o \"método\" NQC. O método Moré-Toraldo usa o método dos Gradientes Conjugados para explorar a face da região factível definida pela iteração atual, e o método do Gradiente Projetado para mudar de face. O \"método\" NQC usa o método do Gradiente Espectral Projetado para definir em que face trabalhar, e o método de Newton para calcular o minimizador da quadrática reduzida a esta face. Utilizamos os métodos esparsos Moré-Toraldo e NQC para resolver o problema de projeção de GENLIN e comparamos seus desempenhos