Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Ronquim, Flávia Marini |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3137/tde-17072019-095500/
|
Resumo: |
Em um cenário global de indisponibilidade hídrica, até regiões sem histórico de escassez de recursos hídricos vêm sendo impactadas pela ausência de chuvas e circunstâncias de adversidade climática. Com perspectivas cada vez menos favoráveis quanto ao abastecimento hídrico, têm-se difundido progressivamente, no Brasil e no mundo, alternativas de tratamento de efluentes aquosos industriais visando seu reúso na própria indústria, diminuindo a necessidade de captação de água em corpos hídricos. Os processos de separação com membrana (PSM\'s) têm tido destaque, sobretudo para reúso em caldeiras e torres de resfriamento. Em um PSM, no entanto, os íons removidos da corrente de alimentação durante o processo de dessalinização concentram-se no compartimento de rejeito das membranas (concentrado). Consequentemente, os sais de baixa solubilidade comumente ultrapassam sua saturação e excedem seus limites metaestáveis, passando a oferecer risco de deposição sobre as membranas. As deposições salinas, chamadas incrustações (ou scaling) prejudicam o processo de dessalinização: reduzem a taxa de recuperação de água, aumentam o consumo energético e danificam membranas e tubulações. Uma vez que o sulfato de bário (BaSO4) é um dos sais com maior potencial incrustante em efluentes industriais, e cujas incrustações apresentam maiores resistências às práticas convencionais de limpeza, estudou-se métodos preventivos de incrustação de BaSO4 por remoção de íons bário de fase líquida a montante de um PSM. A depleção de bário de solução foi analisada mediante: (i) precipitação de BaSO4 por meio de dessupersaturação (com adição de sementes) e efeito do íon comum (excesso de sulfato) e (ii) precipitação de CaCO3 por abrandamento com incorporação do íon Ba2+ no precipitado. Desenvolveu-se, inicialmente, um estudo conceitual da precipitação de BaSO4 por modelagem termodinâmica, aplicada ao tratamento de um efluente padrão de refinaria de petróleo supersaturado em BaSO4. As simulações termodinâmicas apontam que o pre-tratamento de efluentes por dessupersaturação, com opção de adicionar sulfato (via adição externa ou reciclo) são promissores para aumentar o rendimento de PSM\'s. Em estudos experimentais com efluente sintético de refinaria de petróleo, foi obtida a cinética de precipitação do BaSO4 para o ajuste de um modelo de precipitação de BaSO4. Observou-se que o tempo de indução do BaSO4 foi reduzido à medida que se aumentou o excesso de sulfato (em relação ao bário presente) ou à medida que se adicionou sementes de BaSO4. Após um período curto de precipitação (alguns minutos), a solução permanecia supersaturada por longos períodos (horas), com razões de supersaturação residuais dentro da faixa de 1,1 a 3,0. Esses valores foram associados com uma dependência de quarta ordem da taxa de crescimento do cristal com a taxa de supersaturação. Verificou-se que a carga de sementes de BaSO4 é diretamente proporcional à depleção de supersaturação, que sementes heterogêneas (CaCO3, CaSO4.2H2O) são ineficazes para a precipitação do BaSO4 e que os íons cálcio inibem a precipitação de BaSO4. A precipitação de CaCO3 (em mix de vaterita e calcita) por abrandamento em efluente sintético foi eficaz para remover bário da solução. O mecanismo que controla o processo foi identificado como sendo a substituição isomórfica do íon cálcio pelo íon bário no retículo cristalino do carbonato de cálcio. Consequentemente, a remoção de bário da solução é favorecida quando se aumenta a quantidade de carbonato de cálcio precipitado e quando o coeficiente de distribuição aparente em vateita e calcita (DBa, que indica a quantidade de bário incorporada ao sólido) é elevado. Valores altos de pH e de concentração de cálcio elevam a precipitação de CaCO3 e, portanto, maximizam a remoção de bário. O coeficiente de distribuição aparente do bário mostra-se independente do pH inicial (na faixa de 9,5 a 11,7) e aumenta com a concentração de cálcio. Ele também aumenta com a quantidade de sementes de calcita, o que pode ser consequência de uma maior incorporação de bário em camadas que crescem sobre substratos puros de CaCO3 ou ainda, pode ser devido à manifestação de mecanismos de adsortivos com o aumento de lugares ativos disponíveis para incorporação de bário. Em experimentos com efluente real, ao contrário do observado com soluções sintéticas, a remoção de bário por dessupersaturação foi realizada com eficiência mesmo em presença do íon cálcio, devido provavelmente a sua complexação com aditivos orgânicos. Em precipitação de calcita, fatores que aumentam a supersaturação inicial, como adição de carbonato e aumento do pH, elevaram a precipitação de CaCO3, o que maximizou a remoção de bário. Tais fatores, no entanto, reduziram valores de DBa em calcita, possivelmente devido à diminuição na sorção de íons que estimulam a incorporação do bário. Dosagens de sulfato (insuficientes para precipitar BaSO4) reduziram a quantidade de calcita precipitada, diminuindo a remoção de bário e, inesperadamente, elevando DBa em calcita. Por fim uma análise de ecoeficiência foi feita em um estudo de reúso de água com zero de descarte líquido em refinaria de petróleo aplicando as técnicas de precipitação estudadas. A implantação de etapas de precipitação e de unidades maiores de osmose inversa (OI) acarretaram em reduções no consumo de energia no tratamento térmico do concentrado da OI, diminuindo proporcionalmente a emissão de gases de efeito estufa, consumo de água e degradação ecotoxicológica de água doce. Além disso, verificou-se redução de capital de investimento (dada à aquisição de equipamentos de evaporação menores) e redução nos custos energéticos operacionais. |