Open Coloring Axiom e aplicações de colorações

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Souza, Thales Sarinho Galvão Santos de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-17012024-121925/
Resumo: Esta dissertação explora o Open Coloring Axiom (OCA) e suas aplicações. Esse axioma foi introduzido por Todorcevíc e pode ser visto como uma propriedade parecida com o Teorema de Ramsey, mas para a topologia dos reais. O OCA afirma que para qualquer coloração aberta para [S]2 com duas cores, existe um subconjunto S não enumerável dos reais tal que todos os seus pares tem cor 0, ou o S pode ser coberto por enumeráveis conjuntos cujos pares tem cor 1. Ao longo da dissertação, apresentamos aplicações para o OCA, as relações do OCA com outros axiomas e estudo de algumas possíveis formas de o generalizar. Também foi estudado técnicas de forcing com o intuito de provar que OCA é consistente com ZFC. Por fim, deixamos dois anexos que reúnem o estudo de grafos e o Teorema de Kuratowski, além da relação entre o CH e o Axioma de Luzin.