Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Souza, Thales Sarinho Galvão Santos de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55135/tde-17012024-121925/
|
Resumo: |
Esta dissertação explora o Open Coloring Axiom (OCA) e suas aplicações. Esse axioma foi introduzido por Todorcevíc e pode ser visto como uma propriedade parecida com o Teorema de Ramsey, mas para a topologia dos reais. O OCA afirma que para qualquer coloração aberta para [S]2 com duas cores, existe um subconjunto S não enumerável dos reais tal que todos os seus pares tem cor 0, ou o S pode ser coberto por enumeráveis conjuntos cujos pares tem cor 1. Ao longo da dissertação, apresentamos aplicações para o OCA, as relações do OCA com outros axiomas e estudo de algumas possíveis formas de o generalizar. Também foi estudado técnicas de forcing com o intuito de provar que OCA é consistente com ZFC. Por fim, deixamos dois anexos que reúnem o estudo de grafos e o Teorema de Kuratowski, além da relação entre o CH e o Axioma de Luzin. |