Análise Bayesiana de Modelos para Dados Binários Correlacionados

Detalhes bibliográficos
Ano de defesa: 2000
Autor(a) principal: Janeiro, Vanderly
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-02032018-141504/
Resumo: Nesta dissertação, desenvolvemos uma análise Bayesiana de modelos de regressão para dados binários correlacionados com covariáveis, podendo ocorrer réplicas. Assumimos os modelos de regressão logístico e probito para dados binários correlacionados considerando efeitos aleatórios com uma mistura de distribuições normais, pois este modelo tem uma grande flexibilidade para ser ajustado aos dados binários correlacionados em muitas aplicações. Também fazemos algumas considerações aos casos onde podem ocorrer repetições das observações ou réplicas. Assumimos distribuições a priori informativas para os parâmetros do modelo e consideramos os algoritmos Gibbs sampling e Metropolis- Hastings, para obter as estimativas de Monte Carlo para as quantidades a posteriori de interesse. Apresentamos também algumas considerações na seleção de modelos utilizando uma medida da discrepância entre o modelo ajustado e os dados (resíduo de Pearson) e utilizando as densidades preditivas (fator de Bayes) estimadas por MCMC (Monte Carlo em Cadeias de Markov). Apresentamos um exemplo númerico para ilustrar os métodos propostos.