Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Vargas, Aurea Rossy Soriano |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-23102018-115029/
|
Resumo: |
Ionospheric scintillation is a rapid variation in the amplitude and/or phase of radio signals traveling through the ionosphere. This spatial and time-varying phenomenon is of interest because its occurrence may affect the reception quality of satellite signals. Specialized receivers at strategic regions can track multiple variables related to the phenomenon, generating a database of historical observations on the regional behavior of ionospheric scintillation. The analysis of such data is very challenging, since it consists of time-varying measurements of many variables which are heterogeneous in nature and with possibly many missing values, recorded over extensive time periods. There is a need to introduce alternative intuitive strategies that contribute to experts acquiring further knowledge from the ionospheric scintillation data. Such challenges motivated a study on the applicability of visualization techniques to support tasks of identification of relevant attributes in the study of the behavior of phenomena described by multiple time-varying variables, of which the ionospheric scintillation is a good example. In particular, this thesis introduces a visual analytics framework, named TV-MV Analytics, that supports exploratory tasks on time-varying multivariate data and was developed following the requirements of experts on ionospheric scintillation from the Faculty of Science and Technology of UNESP at Presidente Prudente, Brazil. TV-MV Analytics provides an interactive visual exploration loop to analysts inspecting the behavior of multiple variables at different temporal scales, through temporal representations associated with clustering and multidimensional projection techniques. Analysts can also assess how different feature sub-spaces contribute to characterizing a certain behavior, where they may direct the analysis process and include their domain knowledge in the exploratory analysis. We also illustrate the application of TV-MV Analytics on multivariate time-varying data sets from three alternative application domains. Experimental results indicate the proposed solutions show good potential on assisting time-varying multivariate data mining tasks, since it reduces the effort required from experts to gain deeper insight into the historical behavior of the variables describing a phenomenon or domain. |