Detalhes bibliográficos
Ano de defesa: |
1999 |
Autor(a) principal: |
Locci, Valter |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55135/tde-02122019-172819/
|
Resumo: |
Dada uma ação de um grupo de Lie G numa variedade M, uma construção geométrica, chamada blow-up, é utilizada para obter uma nova variedade denotada por B(A,M), onde A é um certo subconjunto invariante de M. Quando G é abeliano, através de uma seqüência finita de tais blow-ups equivariantes, uma nova variedade M\' é obtida, dotada de uma ação não-singular de G. Neste trabalho estudamos em que condições a variedade M\' pertence à mesma classe de bordismo de M, e também alguns resultados sobre bordismo de ações não-singulares são obtidos. |