Detalhes bibliográficos
Ano de defesa: |
2024 |
Autor(a) principal: |
Mesquita, Igor Neiva |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/43/43134/tde-27112024-121620/
|
Resumo: |
Esta dissertação investiga a aplicação de técnicas de aprendizado de máquina ao complexo problema de reconstruir decaimentos totalmente leptônicos de di-Higgs e dos processos de fundo envolvendo quarks top no Grande Colisor de Hadrons (LHC, na sigla em inglês). A motivação para este trabalho deriva da necessidade de medir com precisão o parâmetro de autoacoplamento do Higgs, fundamental para entender o potencial do Higgs e explorar a física além do Modelo Padrão. Começando com uma introdução aos conceitos fundamentais de aprendizado de máquina, o estudo desenvolve um modelo de Autoencoder Variacional para Regressão (VAER) adaptado a esse contexto de física de altas energias. Utilizamos MadGraph e Delphes para simular os processos de sinal e de fundo, com foco na produção não ressonante de di-Higgs e em cenários envolvendo bósons de Higgs pesados. O modelo VAER é então aplicado a esses conjuntos de dados para reconstruir a massa invariante do Higgs (Mbbll), demonstrando seu potencial para melhorar a discriminação entre sinal e fundo. Este trabalho ressalta a importância de integrar aprendizado de máquina em análises de física de partículas, visando aumentar a precisão das medições física do Higgs e facilitar a descoberta de novos fenômenos além do Modelo Padrão. |