Detalhes bibliográficos
Ano de defesa: |
2010 |
Autor(a) principal: |
Flores Vega, Christian Humberto |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3142/tde-11082010-171552/
|
Resumo: |
O processamento de sinais EEG permite interpretar, analisar, estudar, pesquisar e experimentar a atividade elétrica do cérebro como resposta para diferentes processos cognitivos, efeitos de drogas ou fármacos, estudo de doenças psiquiátricas ou neurológicas, entre outras. Esta dissertação é orientada ao reconhecimento de padrões cerebrais que permitam classificar estados cognitivos mediante os sinais de EEG registrados em sujeitos realizando tarefas programadas. Ademais espera-se obter a maior quantidade de padrões para cada estado cognitivo e procurar os parâmetros que oferecem maior informação, analisando as principais bandas cerebrais e todos os eletrodos disponíveis na base de dados. A metodologia usada compreende o registro de cinco tarefas cognitivas analisadas com três abordagens diferentes: análises de longe-range tenporal correlations com o algoritmo de Detrended Fluctuations Analysis (DFA), análise da potência dos sinais cerebrais utilizando a Transformada Ondeleta e finalmente o estudo da sincronia cerebral usando a Transformada de Hilbert. Conclui-se que as abordagens utilizadas nesta dissertação reportam alentadores resultados para diferenciar as tarefas cognitivas estudadas, demonstrando que a utilização da informação de todos os eletrodos e de suas principais bandas cerebrais contribuem de forma positiva. Também se consegue reconhecer e identificar quais parâmetros produzem maior informação para esta análise. |