Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Quiroz, Luís Henrique Camargo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3152/tde-10012024-115023/
|
Resumo: |
Este trabalho apresenta um algoritmo para tomografia por ultrassom aplicada a uma mama, visando uso em equipamento portátil para a triagem precoce de tumores. Cada tecido é caracterizado por suas propriedades acústicas. Um tomógrafo para esta aplicação terá uma série de transdutores ao redor de uma cuba com água, na qual a mama será imersa. Cada um dos transdutores emite uma excitação, enquanto os demais capturam as respostas. Ao fim dos padrões de excitação as leituras são processadas para gerar a tomografia. Um protótipo de tal equipamento não está pronto, portanto o conjunto dos transdutores, água e mama será representado numericamente por um modelo de elementos finitos, comumente chamado de problema direto. O algoritmo de tomografia é baseado num modelo de elementos finitos com uma malha mais grosseira que a de simulação, e em otimização por programação quadrática sequencial. A velocidade de propagação do som em cada voxel será ajustada (otimizada) para fazer corresponder as leituras do modelo de otimização com as do modelo de simulação ou experimento físico, quando disponível. Para simplificar o problema, as propriedades de dissipação do som nos diferentes elementos dentro do domínio de análise são consideradas uniformes e iguais. A propagação de onda é um fenômeno dinâmico. Os estados dos modelos são propagados usando uma integração por diferenças centrais. Para cada passo no tempo o modelo de otimização deve ser resolvido, e ´e este processo de simulação por elementos finitos o que mais exige tempo de processamento. Para cada variação no valor de uma propriedade, em cada voxel, cada transdutor emite a excitação, as leituras são numericamente simuladas integrando os passos no tempo com a malha de otimização, e estas leituras comparadas com as de referencia. O modelo de elementos finitos será usado milhares de vezes. O fantoma da mama é um cilindro de poucos centímetros de diâmetro e de altura, e o tumor é um cilindro ainda menor em seu interior. O ultrassom é de baixa frequência, 25 kHz, assim os elementos finitos são maiores, reduzindo o número de elementos no modelo mas preservando uma adequada relação de elementos por comprimento de onda. Assim tem-se um modelo rápido com boa representação dos fenômenos acústicos. São usados 8 e depois 12 elementos por comprimento de onda. Ondas sonoras atravessando um meio qualquer são refletidas com a máxima intensidade nas suas fronteiras externas, e por isso a região de interesse deve ser revestida com elementos extras, cujas propriedades atenuem os ecos. Isto acrescenta complexidade e número de elementos ao modelo completo, comprometendo a velocidade de simulação e de otimização. Imagens iniciais de baixa resolução foram geradas com inferência bayesiana e um atlas anatômico elaborado com amostras da população, com 100000 sorteios supondo distribuição uniforme nas variações de tamanho e posição de mama e tumor. Portanto, um modelo 3D de elementos finitos é uma plataforma viável para representar as equações de derivadas parciais acústicas, e isto permite o desenvolvimento de algoritmos para geração de imagens de tomografia por ultrassom. |