Estudo teórico e experimental da transferência de calor durante a condensação e perda de pressão no interior de minicanais para os refrigerantes R1234ze(E) e R32 com reduzido GWP

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Silva, Jaqueline Diniz da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18147/tde-10112017-133617/
Resumo: Recentemente, observa-se o crescimento do número de trocadores de calor baseados em microcanais devido a necessidade de transferência de elevadas taxas de calor utilizando dispositivos compactos. Tubos de calor, trocadores de calor compactos para equipamentos eletrônicos e controle térmico de satélites, sistemas de condicionamento de ar para automóveis, escritórios e residências são exemplos de aplicações para condensação em canais de diâmetro reduzido. No entanto, na literatura encontra-se reduzido número de estudos experimentais tratando da condensação no interior de canais com diâmetros inferiores a 3 mm, os quais geralmente envolvem refrigerantes com elevado potencial de aquecimento global (GWP). Neste contexto, o presente estudo apresenta uma revisão crítica da literatura envolvendo critérios de transição entre padrões de escoamento, perda de pressão por atrito e coeficiente de transferência de calor durante a condensação no interior de canais convencionais e de micro-escala (minicanais). Levantou-se resultados para o gradiente de pressão por atrito e coeficiente de transferência de calor em aparato experimental localizado na Universidade de Pádua (Università Degli Studi di Padova) para os fluidos refrigerante R1234ze(E) e R32 (GWP de 550 e 6, respectivamente), temperatura de saturação de 40°C, fluxo de calor até 35 kW/m², grau de sub-resfriamento da parede entre 2 e 10 K, velocidade mássicas entre 55 e 275 kg/m²s e título de vapor de 0 a 1. Os dados foram levantados em seção de teste composta por 36 minicanais com diâmetro hidráulico de 1,6 mm e geometria retangular, com o efeito de resfriamento obtido através de água resfriada escoando em contra-corrente ao refrigerante. Os dados experimentais levantados para o gradiente de pressão por atrito e o coeficiente de transferência de calor foram comparados com métodos de previsão da literatura, concluindo que as correlações propostas por Jige, Inoue e Koyama (2016) fornecem as melhores previsões. O comportamento do coeficiente de transferência de calor foi analisado com foco nos mecanismos físicos predominantes durante a condensação. A partir desta análise concluiu-se o predomínio de efeitos de tensão superficial em velocidades mássicas reduzidas e de arrasto em velocidades mássicas elevadas. Este estudo também apresenta uma avaliação comparativa do desempenho dos refrigerantes R1234ze(E) e R32 em relação ao R134a (GWP de 1300) baseada na taxa de transferência de calor por unidade de potência de bombeamento e no potencial de transferência de calor, conforme o critério proposto por Cavallini et al. (2010). Esta análise revelou o desempenho superior para o refrigerante R32 seguido do R134a, com o R1234ze(E) apresentando o pior resultado, independentemente da velocidade mássica.