Semi-parametric generalized log-gamma regression models

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Delgado, Carlos Alberto Cardozo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45133/tde-15032018-185352/
Resumo: The central objective of this work is to develop statistical tools for semi-parametric regression models with generalized log-gamma errors under the presence of censored and uncensored observations. The estimates of the parameters are obtained through the multivariate version of Newton-Raphson algorithm and an adequate combination of Fisher Scoring and Backffitting algorithms. Through analytical tools and using simulations the properties of the penalized maximum likelihood estimators are studied. Some diagnostic techniques such as quantile and deviance-type residuals as well as local influence measures are derived. The methodologies are implemented in the statistical computational environment R. The package sglg is developed. Finally, we give some applications of the models to real data.