Rudimentos de mecânica, ações hamiltoneanas e aplicação momento

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Gonçalves, Guilherme Casas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15072015-105721/
Resumo: Essa dissertação trata de geometria simplética e suas aplicações, apresentando conceitos tais como o gradiente simplético e também o teorema de Darboux. Discutimos a formulação Lagrangeana da mecânica, apresentando as equações de Euler-Lagrange e, usando a geometria simplética, mostramos como estes naturalmente evoluem para o formalismo Hamiltoneano e as equações de Hamilton. Introduzimos também o conceito da métrica de Jacobi e demonstramos o teorema de Noether. Apresentamos o conceito de ações simpléticas e Hamiltoneanas, bem como aplicações momento e comomento. São demonstrados resultados importantes como o teorema de Kirillov-Kostant-Sourieau para órbitas coadjuntas e a redução simplética de Marsden-Weinstein-Meyer. Os resultados centrais apresentados são o teorema de Atiyah-Guillemin-Steinberg de convexidade, o teorema de Schur e Horn para matrizes unitárias e o teorema de Delzant, este último sendo apresentado apenas com uma ideia da prova.