Um modelo de classificação para o Reconhecimento de Entidades Nomeadas

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Silva, Andressa Vieira e
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/8/8139/tde-06042021-192617/
Resumo: O Reconhecimento de Entidades Nomeadas (REN) é uma tarefa de Proces- samento de Linguagem Natural (PLN) que busca identificar as Entidades Nomeadas de um texto, tais como nomes de pessoas, cidades e organiza- ções, classificando-as em um conjunto pré-definido de categorias. Essa é considerada uma tarefa difícil, pois as Entidades Nomeadas constituem uma classe gramatical com muita variação lexical e de baixa frequência quando comparadas à massa total de dados textuais. Recentemente, as pesquisas com redes neurais profundas têm mostrado excelentes resultados em diversas aplicações de PLN, incluindo o REN. Nesta pesquisa, foram investigadas duas arquiteturas de redes neurais para o REN no Harem, um corpus de língua portuguesa: BERT (devlin et al., 2018) e uma rede neural bidirecional LSTM (BiLSTM). O objetivo principal foi explorar traços baseados na distribuição contextual das entidades, através de representações vetoriais word embeddings associadas a traços linguísticos. Foram usados traços de etiquetagem morfossintática, forma ortográfica da palavra e recursos lexicais. Esses traços foram concatenados às representações word embeddings para alimentar a BiLSTM. Os resultados mostraram uma melhora estatisticamente significativa no desempenho desse modelo em comparação à BiLSTM apenas com os word embeddings. O modelo BERT, por sua vez, obteve medidas próximas ao estado da arte no Harem.