"Caminhadas determinísticas em meios desordenados: problema da caminhada do turista".

Detalhes bibliográficos
Ano de defesa: 2002
Autor(a) principal: Lima, Gilson Francisco de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/59/59135/tde-24052006-144856/
Resumo: O estudo de caminhadas aleatórias em meios desordenados e um assunto bastante explorado e pode modelar uma grande variedade de problemas, como por exemplo, problemas de transporte (difusão). O estudo de caminhadas determinísticas em meios desordenados é um assunto pouco explorado. Em uma paisagem composta de N sítios distribuídos aleatoriamente no espaço, um caminhante ("turista") visita estes sítios seguindo a seguinte regra determinística: ir para o sítio vizinho mais próximo que não tenha sido visitado nos últimos passos. De cada sítio inicial, a trajetória obtida com esta dinâmica determinística apresenta inicialmente um tempo de transiente t, onde novos sítios são visitados, e no final um atrator de período p, onde os mesmos sítios são sempre revisitados. Apesar da simplicidade do modelo, a dinâmica e complexa e os resultados não são triviais. Para dimensionalidades d = 2, a distribuição de atratores de período p, obtida numericamente, pode ser descrita por uma lei de potência com um corte exponencial. Os modelos de ligações aleatórias simétricas (que representa o limite de alta dimensionalidade d = 1 do modelo proposto) e assimétricas indicam que o corte exponencial se torna menos importante à medida que N aumenta. O expoente da lei de potência independe da memória tau, sendo portanto uma distribuição robusta. A dinâmica do turista pode ser aplicada a problemas mais abstratos, onde apenas relações de ordem entre vizinhos são dados. O estudo (por amostragem) da estrutura de um dicionário de sinônimos e um exemplo que foi considerado. Mostrou-se que as palavras podem ser embebidas em um espaço Euclidiano de baixa dimensionalidade.Este resultado concorda com um recente estudo exaustivo realizado e questiona o modelo de análise semântica latente. Com a finalidade de entender a transição entre uma caminhada determinística e uma caminhada aleatória, generalizou-se o problema com memória nula designando uma distribuição de probabilidades para o turista visitar os diversos sítios. Esta distribuição e parametrizada por uma variável externa T (temperatura) de modo que para T = 0 têm-se a caminhada do turista como caso limite e para T tendendo para infinito todos os sítios são visitados com igual probabilidade. Resultados analíticos (d = 1) e numéricos mostram a existência de uma região bem delimitada de transição entre os regimes não-ergódico (baixa temperatura) e ergódico (alta temperatura). Uma analogia é estabelecida com o modelo de vidros de Bouchaud. A eficiência da caminhada com relação aos novos sítios visitados, foi estudada e ela e máxima na borda da aleatoriedade, ou seja, ao redor da temperatura de transição.