Detalhes bibliográficos
Ano de defesa: |
2014 |
Autor(a) principal: |
Arias, Juan Camilo Garcia |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/3/3143/tde-31122015-105241/
|
Resumo: |
As faltas de alta impedância (FAI) ocorrem quando um condutor entra em contato com objetos com uma alta resistência, o que não resulta em incrementos significativos de corrente. Este tipo de falta não pode ser detectada por dispositivos de proteção tradicionais que atuam por sobrecorrente. Neste trabalho uma pesquisa do estado da arte das FAI é apresentada e são implementados alguns algoritmos de detecção presentes na literatura. Nesta pesquisa também são propostas duas metodologias de identificação de FAI as quais são baseadas na identificação de buildup e incrementos de energias na faixa de frequências 1920Hz a 3840Hz. Os algoritmos implementados e as metodologias propostas foram testados com simulações de eventos de FAI e de eventos comuns numa rede simulada de uma concessionária do Estado de São Paulo utilizando o software ATP. Estudos do funcionamento de um medidor de qualidade de energia foram feitos com o propósito de determinar as limitações de uma eventual implementação real das metodologias de identificação propostas neste trabalho. Resultados do desempenho das metodologias propostas utilizando os sinais simulados em ATP apresentaram percentagens de identificação superiores aos 80%. Análise das ocorrências de cabo rompido do circuito em estudo foram feitas com o propósito de identificar possíveis eventos de FAI. O desempenho apresentado pelas metodologias propostas na identificação de FAI em sinais reais pode ser melhorado com a disponibilidade de uma maior quantidade de eventos reais de FAI. |