Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Morales, Oscar Armando Hernández |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07062021-120902/
|
Resumo: |
Neste trabalho realizamos todos os sl(n+1)-módulos de peso máximo simples de relações, isto engloba as famílias construídas em [Maz03] e [FRZ19]. Ademais, para uma subálgebra parabólica de sl(n+1) com subálgebra de Levi sl(2) + h construímos uma extensa família de sl(n+1)-módulos de relações como imagens do funtor de localização torcida de sl(n+1)-módulos de peso máximo simples de relações. Como aplicações, temos a construção explícita em termos de tabelas de Gelfand-Tsetlin de todos os sl(n+1)-módulos de peso máximo simples admissíveis, os quais foram anteriormente descritos por Arakawa [Ara16]. Além disso, obtemos duas novas famílias de representações irredutíveis de energia positiva da álgebra de vertex simples afim Vk(sl(n+1)) na órbita nilpotente minimal e órbita nilpotente principal de sl(n+1), respectivamente. Essas representações são quocientes de módulos induzidos para a álgebra de Kac-Moody afim de tipo A e incluem, em particular, todos os módulos simples admissíveis induzidos de sl(2). Assim, completamos alguns dos resultados apresentados em [AFR17]. |