Representações de Gelfand-Tsetlin de álgebras de Vertex

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Morales, Oscar Armando Hernández
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-07062021-120902/
Resumo: Neste trabalho realizamos todos os sl(n+1)-módulos de peso máximo simples de relações, isto engloba as famílias construídas em [Maz03] e [FRZ19]. Ademais, para uma subálgebra parabólica de sl(n+1) com subálgebra de Levi sl(2) + h construímos uma extensa família de sl(n+1)-módulos de relações como imagens do funtor de localização torcida de sl(n+1)-módulos de peso máximo simples de relações. Como aplicações, temos a construção explícita em termos de tabelas de Gelfand-Tsetlin de todos os sl(n+1)-módulos de peso máximo simples admissíveis, os quais foram anteriormente descritos por Arakawa [Ara16]. Além disso, obtemos duas novas famílias de representações irredutíveis de energia positiva da álgebra de vertex simples afim Vk(sl(n+1)) na órbita nilpotente minimal e órbita nilpotente principal de sl(n+1), respectivamente. Essas representações são quocientes de módulos induzidos para a álgebra de Kac-Moody afim de tipo A e incluem, em particular, todos os módulos simples admissíveis induzidos de sl(2). Assim, completamos alguns dos resultados apresentados em [AFR17].