Resultados para o modelo de rumor de Maki-Thompson em árvores

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Speroto, Adalto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/104/104131/tde-23062021-142435/
Resumo: Nesta tese, estudamos o modelo de rumor de Maki-Thompson em árvores homogêneas infinitas que é formulado como um processo de Markov a tempo contínuo. Este modelo pode ser definido como um sistema de partículas interagentes representando a disseminação de um boato por indivíduos em uma árvore homogênea. Assumimos que cada indivíduo possa pertencer a uma das três classes em uma população representada por: ignorantes, propagadores e contidos. Um propagador conta o boato a qualquer um de seus vizinhos ignorantes a uma taxa constante. Por outro lado, com a mesma taxa, um propagador torna-se um contido depois de interagir com outro propagador ou um contido. Ainda neste trabalho, estendemos nossa análise a duas generalizações, na primeira supomos que cada propagador deixa de propagar o boato logo após estar envolvido em um determinado número de tentativas frustradas e na segunda estendemos o modelo de Maki-Thompson às árvores aleatórias independentes e identicamente distribuídas. Estudamos condições suficientes sob as quais o boato se extingue ou sobrevive com probabilidade positiva.