Visual analytics via graph signal processing

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Dal Col Júnior, Alcebíades
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-22102018-112358/
Resumo: The classical wavelet transform has been widely used in image and signal processing, where a signal is decomposed into a combination of basis signals. By analyzing the individual contribution of the basis signals, one can infer properties of the original signal. This dissertation presents an overview of the extension of the classical signal processing theory to graph domains. Specifically, we review the graph Fourier transform and graph wavelet transforms both of which based on the spectral graph theory, and explore their properties through illustrative examples. The main features of the spectral graph wavelet transforms are presented using synthetic and real-world data. Furthermore, we introduce in this dissertation a novel method for visual analysis of dynamic networks, which relies on the graph wavelet theory. Dynamic networks naturally appear in a multitude of applications from different domains. Analyzing and exploring dynamic networks in order to understand and detect patterns and phenomena is challenging, fostering the development of new methodologies, particularly in the field of visual analytics. Our method enables the automatic analysis of a signal defined on the nodes of a network, making viable the detection of network properties. Specifically, we use a fast approximation of the graph wavelet transform to derive a set of wavelet coefficients, which are then used to identify activity patterns on large networks, including their temporal recurrence. The wavelet coefficients naturally encode spatial and temporal variations of the signal, leading to an efficient and meaningful representation. This method allows for the exploration of the structural evolution of the network and their patterns over time. The effectiveness of our approach is demonstrated using different scenarios and comparisons involving real dynamic networks.