Wavelets, predição linear e LS-SVM aplicados na análise e classificação de sinais de vozes patológicas

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Fonseca, Everthon Silva
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/18/18133/tde-04072008-094655/
Resumo: Neste trabalho, foram utilizadas as vantagens da ferramenta matemática de análise temporal e espectral, a transformada wavelet discreta (DWT), além dos coeficientes de predição linear (LPC) e do algoritmo de inteligência artificial, Least Squares Support Vector Machines (LS-SVM), para aplicações em análise de sinais de voz e classificação de vozes patológicas. Inúmeros trabalhos na literatura têm demonstrado o grande interesse existente por ferramentas auxiliares ao diagnóstico de patologias da laringe. Os componentes da DWT forneceram parâmetros de medida para a análise e classificação das vozes patológicas, principalmente aquelas provenientes de pacientes com edema de Reinke e nódulo nas pregas vocais. O banco de dados com as vozes patológicas foi obtido do Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP). Utilizando-se o algoritmo de reconhecimento de padrões, LS-SVM, mostrou-se que a combinação dos componentes da DWT de Daubechies com o filtro LP inverso levou a um classificador de bom desempenho alcançando mais de 90% de acerto na classificação das vozes patológicas.