Modelos para análise de dados discretos longitudinais com superdispersão

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Rizzato, Fernanda Bührer
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/11/11134/tde-23032012-092433/
Resumo: Dados longitudinais na forma de contagens e na forma binária são muito comuns, os quais, frequentemente, podem ser analisados por distribuições de Poisson e de Bernoulli, respectivamente, pertencentes à família exponencial. Duas das principais limitações para modelar esse tipo de dados são: (1) a ocorrência de superdispersão, ou seja, quando a variabilidade dos dados não é adequadamente descrita pelos modelos, que muitas vezes apresentam uma relação pré-estabelecida entre a média e a variância, e (2) a correlação existente entre medidas realizadas repetidas vezes na mesma unidade experimental. Uma forma de acomodar a superdispersão é pela utilização das distribuições binomial negativa e beta binomial, ou seja, pela inclusão de um efeito aleatório com distribuição gama quando se considera dados provenientes de contagens e um efeito aleatório com distribuição beta quando se considera dados binários, ambos introduzidos de forma multiplicativa. Para acomodar a correlação entre as medidas realizadas no mesmo indivíduo podem-se incluir efeitos aleat órios com distribuição normal no preditor linear. Esses situações podem ocorrer separada ou simultaneamente. Molenberghs et al. (2010) propuseram modelos que generalizam os modelos lineares generalizados mistos Poisson-normal e Bernoulli-normal, incorporando aos mesmos a superdispersão. Esses modelos foram formulados e ajustados aos dados, usando-se o método da máxima verossimilhança. Entretanto, para um modelo de efeitos aleatórios, é natural pensar em uma abordagem Bayesiana. Neste trabalho, são apresentados modelos Bayesianos hierárquicos para dados longitudinais, na forma de contagens e binários que apresentam superdispersão. A análise Bayesiana hierárquica é baseada no método de Monte Carlo com Cadeias de Markov (MCMC) e para implementação computacional utilizou-se o software WinBUGS. A metodologia para dados na forma de contagens é usada para a análise de dados de um ensaio clínico em pacientes epilépticos e a metodologia para dados binários é usada para a análise de dados de um ensaio clínico para tratamento de dermatite.