Um estudo da aplicação de técnicas de inteligência computacional e de aprendizado em máquina de mineração de processos de negócio

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Cárdenas Maita, Ana Rocío
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
BPM
Link de acesso: http://www.teses.usp.br/teses/disponiveis/100/100131/tde-22012016-155157/
Resumo: Mineração de processos é uma área de pesquisa relativamente recente que se situa entre mineração de dados e aprendizado de máquina, de um lado, e modelagem e análise de processos de negócio, de outro lado. Mineração de processos visa descobrir, monitorar e aprimorar processos de negócio reais por meio da extração de conhecimento a partir de logs de eventos disponíveis em sistemas de informação orientados a processos. O principal objetivo deste trabalho foi avaliar o contexto de aplicação de técnicas provenientes das áreas de inteligência computacional e de aprendizado de máquina, incluindo redes neurais artificiais. Para fins de simplificação, denominadas no restante deste texto apenas como ``redes neurais\'\'. e máquinas de vetores de suporte, no contexto de mineração de processos. Considerando que essas técnicas são, atualmente, as mais aplicadas em tarefas de mineração de dados, seria esperado que elas também estivessem sendo majoritariamente aplicadas em mineração de processos, o que não tinha sido demonstrado na literatura recente e foi confirmado por este trabalho. Buscou-se compreender o amplo cenário envolvido na área de mineração de processos, incluindo as principais caraterísticas que têm sido encontradas ao longo dos últimos dez anos em termos de: tipos de mineração de processos, tarefas de mineração de dados usadas, e técnicas usadas para resolver tais tarefas. O principal enfoque do trabalho foi identificar se as técnicas de inteligência computacional e de aprendizado de máquina realmente não estavam sendo amplamente usadas em mineração de processos, ao mesmo tempo que se buscou identificar os principais motivos para esse fenômeno. Isso foi realizado por meio de um estudo geral da área, que seguiu rigor científico e sistemático, seguido pela validação das lições aprendidas por meio de um exemplo de aplicação. Este estudo considera vários enfoques para delimitar a área: por um lado, as abordagens, técnicas, tarefas de mineração e ferramentas comumente mais usadas; e, por outro lado, veículos de publicação, universidades e pesquisadores interessados no desenvolvimento da área. Os resultados apresentam que 81% das publicações atuais seguem as abordagens tradicionais em mineração de dados. O tipo de mineração de processos com mais estudo é Descoberta 71% dos estudos primários. Os resultados deste trabalho são valiosos para profissionais e pesquisadores envolvidos no tema, e representam um grande aporte para a área