Carbonatos em altas pressões como possíveis hospedeiros de carbono no interior da terra

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Santos, Michel Lacerda Marcondes dos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
DFT
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-06092016-100613/
Resumo: O estudo do interior da Terra apresenta diversos desafios, principalmente devido à impossibilidade de observações diretas de suas propriedades. Ondas sísmicas liberadas por terremotos são a melhor fonte de informação sobre a estrutura do planeta, mas sua correta interpretação depende do conhecimento das propriedades de seus elementos constituintes. Entretanto, estes estudos devem ser feitos nas condições extremas de temperatura e pressão do interior terrestre, condições difíceis de serem alcançadas em laboratório. Neste contexto, o estudo teórico de materiais tem sido muito importante na elaboração de modelos sobre a estrutura interna da Terra e na correta interpretação de dados sísmicos. Pesquisas recentes têm mostrado que a quantidade de carbono no manto inferior da Terra é maior do que se pensava anteriormente, e é importante compreender seus efeitos no interior profundo da Terra. Apesar da importância de entender os efeitos do carbono no interior da Terra, existem poucos estudos deste elemento nestas condições extremas de pressão e temperatura. Neste trabalho, utilizamos métodos e técnicas da física do estado sólido para estudar as propriedades de compostos de carbono nas condições de pressão e temperatura do manto inferior terrestre. Estudamos, primeiramente, as propriedades estruturais, eletrônicas e elásticas do MgSiO3 nas estruturas perovskita e pós-perovskita, considerado o principal mineral do manto inferior. Os resultados obtidos para as velocidades acústicas neste mineral mostraram variações maiores em relação às direções cristalinas, quando comparadas com mudanças devido à transição de fase estrutural. Isso indica que uma orientação preferencial dos eixos (anisotropia) pode ajudar a explicar algumas regiões com aumento descontínuo nas velocidades sísmicas. Posteriormente, foram obtidas as propriedades do MgCO3 e do CaCO3 em suas estruturas mais estáveis, em função da pressão. Nossos resultados foram comparados com os do MgSiO3 , mostrando que carbonatos de cálcio e de magnésio são estáveis nas condições do manto terrestre e que sua formação é energeticamente favorável. Resultados dos cálculos dos coeficientes elásticos e das velocidades acústicas nestes minerais mostram que as velocidades são menores que aquelas no MgSiO 3 . Dessa forma, em regiões ricas em carbono deve ocorrer a formação destes carbonatos e, por conseguinte, as velocidades sísmicas seriam menores nessas regiões. Isso pode explicar a existência das zonas de baixa velocidade na fronteira do manto inferior com o núcleo. Foram estudadas, também, as consequências da introdução de efeitos térmicos. Entretanto, obteve-se que os resultados não apresentam alterações significativas, de modo que mesmo nas altas temperaturas do interior da Terra nossas conclusões permanecem válidas, onde propomos que as regiões de baixa velocidade no manto inferior possam ser provocadas pela presença de carbono na forma de carbonatos e que a formação destes seria um modelo adicional para explicar onde e como o carbono pode ser armazenado no manto profundo.