Detecção de anomalias em prescrições médicas com aprendizagem federada e gerenciamento de armazenamento em blockchain

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Zutião, Gabriel Augusto
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/55/55134/tde-19122023-122357/
Resumo: Com os avanços nas capacidades de processamento e armazenamento de dados em sistemas de registros médicos eletrônicos, evidencia-se a relevância da discussão sobre a existência de um ponto de falha único nos sistemas tradicionais, nos quais todo o tratamento dos dados é feito por uma autoridade central suscetível a falhas e ataques. Os dados de registros médicos, como prescrição de medicamentos, são considerados sensíveis pois tratam de informações pessoais e por isso devem estar seguros e serem privados contra acessos indevidos. No caso de prescrições, podem ocorrer problemas como fraudes e anomalias, tais como dosagens e frequências incorretas ou maliciosas. Entre essas últimas, cita-se as feitas para adquirir medicamentos de mais difícil obtenção para revenda e a compra de medicamentos controlados sem a devida permissão de um médico autorizado para fins de uso abusivo. Algumas soluções presentes na literatura para os problemas apresentados se utilizam de redes descentralizadas para solucionar o problema do ponto único de falha. Outras se utilizam de algoritmos de aprendizado de máquina para a análise de fraudes incluindo a aprendizagem federada, que separa o treinamento do modelo entre os clientes tornando assim o processo descentralizado. Todavia, faz-se necessária a elaboração de um modelo que seja eficaz contra os dois grupos de problemas citados voltado à área de prescrições médicas e que seja eficiente, eficaz, que possa preservar a privacidade dos dados e que seja independente das tecnologias utilizadas e adaptável. Sendo assim, o presente trabalho propõe uma arquitetura de rede blockchain associada a uma rede de aprendizagem federada para o processamento de registros de prescrições médicas, utilizando regressão logística para detecção de anomalias na quantidade e na frequência da prescrição de medicamentos. Os experimentos relacionados à rede foram realizados em redes Ethereum locais criadas na ferramenta Hyperledger Besu integradas a redes de aprendizagem federada criadas com a ferramenta Flower. Os resultados obtidos nos experimentos provaram que a arquitetura foi capaz de ser escalável e os seus aspectos qualitativos justificam o aumento do tempo entre as rodadas da aprendizagem federada quando integrada à rede blockchain. A solução apresentada é independente de tecnologia, adaptável em relação ao âmbito e também à sua implementação e foi capaz de cumprir com seus propósitos, obtendo uma acurácia de 98,37% na detecção de anomalias e um tempo médio de aproximadamente 10s em cada rodada da aprendizagem em uma rede com 5 nós e aproximadamente 15s para 11 nós, o que demonstrou um aumento menos que linear do tempo.