O problema integrado de dimensionamento e sequenciamento de lotes no processo de fabricação da cerveja: modelos e métodos de solução

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Baldo, Tamara Angélica
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-12032015-161656/
Resumo: Este trabalho aborda o problema multiestágio de planejamento e programação da produção em indústrias cervejeiras. O processo de fabricação de cerveja pode ser dividido em duas etapas principais: preparação do líquido e envase. A primeira etapa ocorre, na maior parte do tempo, dentro de tanques de fermentação e maturação. A segunda ocorre nas linhas de envase, podendo ter início assim que o líquido estiver pronto nos tanques. O tempo de preparação do líquido demora vários dias, enquanto que na maioria das indústrias de bebidas carbonatadas este tempo é de no máximo algumas horas. O objetivo deste estudo é obter planos de produção viáveis que visam otimizar as decisões de programação envolvidas nestes processos. Visitas a cervejarias no Brasil e em Portugal foram realizadas para uma maior familiaridade do processo de produção e dados foram coletados. Modelos de programação inteira mista para representar o problema foram desenvolvidos, baseados em abordagens CSLP (The Continuous Setup Lot-Sizing Problem), GLSP (General Lot Sizing and Scheduling Problem), SPL (Simple Plant Location Problem) e ATSP (Asymmetric Travelling Salesman Problem). Os resultados mostram que os modelos são coerentes e representam adequadamente o problema, entretanto, mostram-se difíceis de serem resolvidos na otimalidade. Esta dificuldade de resolução dos modelos motivou o desenvolvimento de procedimentos MIP-heurísticos, como também de uma metaheurística GRASP (Greedy Randomized Adaptive Search Procedure). As soluções obtidas pelos procedimentos heurísticos são de boa qualidade, quando comparadas ao melhor limitante inferior encontrado por meio da resolução dos modelos matemáticos. Os testes computacionais foram realizados utilizando instâncias geradas com base em dados reais.