Estudo das reações nucleares envolvendo núcleos pesados e prótons a energias intermediárias e altas e de uma aplicação em física de reatores nucleares (ADS)

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Matuoka, Paula Fernanda Toledo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-16012017-105655/
Resumo: Neste trabalho, foram estudadas as reações envolvendo núcleos pesados e prótons no regime de energias intermediárias e altas através de simulações computacionais com o modelo Monte Carlo CRISP (Colaboração Rio - Ilhéus - São Paulo). Os principais processos nucleares investigados foram a cascata intranuclear e a competição evaporação-fissão. Em estudos preliminares, determinou-se que o CRISP reproduz satisfatoriamente a multiplicidade de nêutrons de evaporação (E < 20 MeV) da reação p (1200 MeV) + Pb-208 e a produção de resíduos de spallation para p (1000 MeV) + Pb-208. Já o estudo da relação entre multiplicidade de nêutrons e fissão para a reação de prótons com energia até 85 MeV com Th-232 indicou que o CRISP superestimou as emissões, enquanto subestimou a seção de choque de fissão dessa reação - reflexo das limitações do modelo de cascata nuclear para baixas energias (da ordem de 50 MeV). A reação p (1200 MeV) + Pb-208 foi escolhida para o estudo de uma fonte de nêutrons de spallation. A cascata intranuclear foi responsável pela emissão dos nêutrons energéticos da reação (E > 20 MeV), enquanto que a evaporação foi responsável pelo maior número de nêutrons emitidos. A seção de choque de fissão encontrada foi de 209 mb, enquanto que a de spallation foi de 1788 mb - ambas comparáveis aos valores experimentais. A distribuição de massa dos fragmentos indicou fissão simétrica. Finalmente, foi utilizado outro código Monte Carlo, o MCNP, para o transporte de radiação, a fim de compreender o papel da fonte de nêutrons de spallation em um reator nuclear ADS (Accelerator Driven System). Simulou-se um reator PWR, inicialmente, para estudar a produção de nuclídeos no processo de queima do combustível nuclear. Em seguida, simulou-se uma primeira tentativa de adaptação de uma fonte de spallation a um reator térmico de dimensões industriais. Constatou-se que não houve redução da concentração de elementos transurânicos com o modelo de reator adotado e alterações foram propostas.