Detalhes bibliográficos
Ano de defesa: |
2015 |
Autor(a) principal: |
Petean, Felipe Coelho de Souza |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/11/11150/tde-28102015-171744/
|
Resumo: |
A silvicultura urbana é um dos elementos essenciais à manutenção da qualidade de vida nos grandes centros urbanos. A existência de uma ampla rede de arvores distribuída ao longo das vias e dos espaços públicos atua promovendo a qualidade do ar, a conservação de água, o conforto térmico, acústico e psicológico dos cidadãos. Florestas urbanas são capazes de amenizar as emissões dos Gases do Efeito Estufa (GEE), tais como o CO2, atuando como sumidouros. Visto sua importância, novas aplicações de ferramentas de sensoriamento remoto têm surgido para auxiliar no planejamento e implantação da silvicultura urbana. O sistema de escaneamento a laser aerotransportado LiDAR (Light Detection And Ranging em inglês), gera uma representação em três dimensões do objeto alvo por meio de uma nuvem de pontos georreferenciados. O cruzamento com sensores de altíssima resolução espectral proporciona analises mais aprofundadas do objeto, podendo-se extrair diversas métricas florestais tais como altura, área basal, e até mesmo espécie. O trabalho teve como objetivo verificar a contribuição do uso de informações derivadas da nuvem de pontos LiDAR, na identificação e classificação das seis espécies florestais mais frequentes do Parque Municipal Américo Renné Giannetti em Belo Horizonte, Minas Gerais, Brasil, a fim de auxiliar no planejamento e manejo da silvicultura urbana. Para tanto, por meio de classificação supervisionada, cruzou-se informações de levantamento de campo, segmentação de copas, pontos de topo de copa de árvore extraídos da nuvem LiDAR, e uma imagem multiespectral WordlView-2. A acurácia da classificação foi medida por análise da exatidão global do processo e por meio do índice Kappa. Os pontos de topo de copa de árvore derivados da nuvem LiDAR contribuíram para a localização e classificação das classes referentes às espécies florestais, quando comparados ao mesmo processo sem estes pontos. A segmentação das copas executada pelo programa eCognition facilitou o lançamento das amostras treinamento e teste. O classificador ECHO conseguiu melhores valores de acurácia e índice Kappa, frente aos outros classificadores do programa Multispec. O uso de informações provenientes da nuvem de pontos LiDAR se mostrou promissor em imagens multiespectrais de ambiente florestal urbano, aumentando a acurácia geral da classificação supervisionada. |