Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Vallim, Rosane Maria Maffei |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-30082013-101303/
|
Resumo: |
Um dos desafios da Inteligência Artificial aplicada em jogos é o aprendizado de comportamento, em que o objetivo é utilizar estatísticas obtidas da interação entre jogador e jogo de modo a reconhecer características particulares de um jogador ou monitorar a evolução de seu comportamento no decorrer do tempo. A maior parte dos trabalhos na área emprega modelos previamente aprendidos, por meio da utilização de algoritmos de Aprendizado de Máquina. Entretanto, são poucos os trabalhos que consideram que o comportamento de um jogador pode evoluir no tempo e que, portanto, reconhecer quando essas mudanças ocorrem é o primeiro passo para produzir jogos que se adaptam automaticamente às capacidades do jogador. Para detectar variações comportamentais em um jogador, são necessários algoritmos que processem dados de modo incremental. Esse pré-requisito motiva o estudo de algoritmos para detecção de mudanças da área de Mineração em Fluxos Contínuos de Dados. Entretanto, algumas das características dos algoritmos disponíveis na literatura inviabilizam sua aplicação direta ao problema de detecção de mudança em jogos. Visando contornar essas dificuldades, esta tese propõe duas novas abordagens para detecção de mudanças de comportamento. A primeira abordagem é baseada em um algoritmo incremental de agrupamento e detecção de novidades que é independente do número e formato dos grupos presentes nos dados e que utiliza um mecanismo de janela deslizante para detecção de mudanças de comportamento. A segunda abordagem, por outro lado, é baseada na comparação de janelas de tempo consecutivas utilizando espectrogramas gerados a partir dos dados contidos em cada janela. Os resultados experimentais utilizando simulações e dados de jogos comerciais indicam a aplicabilidade dos algoritmos propostos na tarefa de detecção de mudanças de comportamento de um jogador, assim como mostram sua vantagem em relação a outros algoritmos para detecção de mudança disponíveis na literatura |