Reconhecimento de padrões de nutrição para nitrogênio e potássio em híbridos de milho por análise de imagens digitais

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Silva, Fernanda de Fátima da
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/74/74131/tde-04092015-084528/
Resumo: A adubação e a utilização de cultivares mais produtivos consistem em tecnologias essenciais para melhorar a produtividade e a sustentabilidade da cultura do milho (Zea mays L.). A análise de imagens digitais é uma tecnologia utilizada para a identificação de deficiência nutricional em folhas de milho em estádios iniciais de desenvolvimento, já que, nos métodos atuais, é muito difícil a correção do nutriente deficiente no mesmo ciclo da cultura. O objetivo deste trabalho foi avaliar as características nutricionais e produtivas, bem como verificar métodos de extração de características de imagens digitais para diagnosticar sintomas de deficiência de nitrogênio (N) e potássio (K) em híbridos de milho, cultivados em casa de vegetação, com deficiência induzida em nitrogênio (N) ou potássio (K); e posteriormente no campo. O experimento foi independente para cada elemento e conduzido em 2 etapas: 1º) casa de vegetação sob cultivo hidropônico, com tratamentos em fatorial 4 (doses) x 3 (híbridos) e 4 repetições, sendo 4 doses: 5, 20%, 100% e 200% da dose completa; e 2º) campo, em blocos ao acaso em fatorial 4x3 (4 doses e 3 híbridos) e 4 blocos, sendo as doses de adubação: omissão individual e completa (0%) de N ou K, 50%, 100% e 200% da dose recomendada do nutriente em estudo. Os híbridos foram: DKB390 PróR2®(H1), Pioneer 30F35®(H2) e Syngenta Status®(H3). A coleta e digitalização das folhas foram realizadas nos estádios V4 e R1. Foram obtidas as imagens da folha indicativa do estádio (FI), que foram processadas pela análise de imagens e analisadas quimicamente. Os métodos de extração de características baseados em padrões de textura de imagens em escala de cinza foram: Fourier, Descritor Fractal (Fractal), Local Binary Pattern (LBP), Gabor Wavelets (GW) e Gabor Wavelets + Fractal Descriptors (GWF); e também foram estudados métodos de extração de características baseados em 4 índices espectrais de imagens coloridas: excesso de verde (EVd), vermelho normalizado (Vern), verde normalizado (Vn) e razão verde-vermelho (Rvv) e a combinação entre eles. Em casa de vegetação, foram determinadas massa seca da parte aérea (MSPA) e de raízes (MSRz) e as concentrações de macro e micronutrientes. No campo, no final do ciclo, foram realizadas avaliações da produtividade e análise química foliar e do solo. A redução nas doses de N ou de K nos híbridos estudados promoveu decréscimos significativos na concentração foliar desses elementos nos híbridos nos 2 estádios avaliados, apresentando sintomas visuais típicos de deficiência de N ou de K para os híbridos conduzidos com a menor dose de tal nutriente. A MSPA e MSRz nos híbridos conduzidos em casa de vegetação e a produtividade no campo também foram comprometidas com a redução na disponibilidade de N ou de K para os híbridos estudados. Para os híbridos conduzidos em casa de vegetação com doses de N ou de K, quando estudados separadamente pelos métodos baseados em textura, o Fourier apresentou alta porcentagem de acertos em todos os híbridos e nos 2 estádios, exceto para H3 no R1. Os melhores métodos baseados em índices espectrais apresentaram índice Kappa classificado como acima de bom.