Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Braz, Daniel Cesar |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/76/76135/tde-16112022-161304/
|
Resumo: |
Esta tese explora o conceito de sistemas computacionais semi-automatizados de diagnóstico baseados em Aprendizado de Máquina (AM), em que diferentes tipos de dados de biossensores e de outras fontes são empregados. A partir de um pipeline base de AM, foram desenvolvidas quatro aplicações e diversos métodos foram implementados para cada uma das etapas/tarefas do pipeline. Como foram selecionados problemas desafiadores, um alto desempenho na acurácia do diagnóstico em geral só foi alcançado com algoritmos de AM supervisionado. Três aplicações foram em diagnóstico de câncer, sendo a primeira a partir de imagens de microscopia eletrônica de genossensores que detectam o biomarcador de PCA3 para câncer de próstata. Essas imagens foram usadas como entrada para algoritmos de AM supervisionado. Com os atributos de textura Local Complex Features and Neural Network (LCFNN) e o algoritmo Linear Discriminant Analysis (LDA) obteve-se uma taxa de acerto de 99,9% para classificação binária (sim/não para PCA3) e 88,3% para a classificação multiclasse em que se determina a concentração do biomarcador de PCA3. As outras duas aplicações envolveram a detecção de biomarcadores de câncer a partir de medidas elétrica/eletroquímica. A concentração da proteína p53, importante marcador de diferentes tipos de câncer, em amostras de urina e saliva sintéticas, foi determinada a partir de medidas eletroquímicas com imunossensores, em que voltamogramas foram analisados com os algoritmos Logistic Regression (LR), LDA, Support Vector Machine-kernel linear (SVM- L), Gaussian Naive Bayes (GNB), K-Nearest Neighbors (KNN) e Decision Tree (DT). O imunossensor otimizado exibiu acurácia de 100% com todos os algoritmos na maioria dos conjuntos de atributos construídos a partir dos dados brutos. No diagnóstico de câncer de boca, a partir de medidas de impedância elétrica com uma língua eletrônica em amostras de saliva de pacientes e voluntários, a maior acurácia de 86.7% foi obtida com o algoritmo SVM-kernel radial. Nesta aplicação, a acurácia da classificação multiclasse aumentou quando foram adicionadas informações clínicas dos pacientes, indicando a importância de combinação de diferentes tipos de dados nos sistemas computacionais. A quarta aplicação foi o diagnóstico de COVID-19 com a detecção da proteína S do SARS-CoV-2 a partir de mapas hiperespectrais de Espectroscopia Raman com Amplificação de Superfície (SERS) obtidos de imunossensores. Usando algoritmo LDA obteve-se uma acurácia de 100% na distinção dos mapas para resultado positivo e negativo para SARS-CoV-2. Os resultados dessas quatro aplicações demonstram a possibilidade de se desenvolverem sistemas automatizados de diagnóstico, pois as várias etapas/tarefas dos pipelines de AM podem ser implementadas sem necessidade de intervenção humana, mesmo quando se combinam imagens, dados clínicos e de testes clínicos. |