Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Sousa, Mariana Martins de Brito |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/3/3148/tde-08112021-111440/
|
Resumo: |
O nível de urbanização do mundo está aumentando nos últimos anos e consequentemente cresce o número de movimentos de carga e pessoas nos centros urbanos, desafiando ainda mais a infraestrutura de mobilidade das cidades, durante a etapa de last-mile. Uma alternativa importante em relação ao transporte convencional é a utilização de uma frota de veículos autônomos, que interfere positivamente na sustentabilidade, diminuindo o consumo de combustíveis e as emissões de carbono. A proposta desse trabalho é criar um modelo com a função de realizar a previsão da demanda espaço-temporal das viagens de Yellow Taxi, na cidade de Nova Iorque, com o intuito de reduzir a quantidade de taxis vazios nas ruas, economizando energia e diminuindo o congestionamento de veículos nos grandes centros urbanos. Para modelar o problema foi utilizado o modelo STARMA, de séries temporais, considerando a correlação espaço-temporal dos dados. Os resultados indicaram um erro percentual absoluto médio de aproximadamente 45% para as previsões, demonstrando que a correlação espacial exerce papel importante nos dados. |