Modelos lineares mistos assimétricos

Detalhes bibliográficos
Ano de defesa: 2004
Autor(a) principal: Davila, Victor Hugo Lachos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://teses.usp.br/teses/disponiveis/45/45133/tde-20210729-141613/
Resumo: Modelos lineares mistos tem sido frequentemente usados na análise de dados onde as respostas são agrupadas, pelo fato de serem flexíveis para modelar a correlação entre e intra-indivíduos (ou grupos). A normalidade (simetria) dos efeitos e erros aleatórios é uma suposição rotineira em modelos lineares mistos, que pode ser não realista e obscurecer importantes características da variação entre e intra-indivíduos (ou grupos). Neste trabalho relaxamos a suposição de normalidade considerando que tanto os erros como os efeitos aleatórios seguem uma distribuição normal-assimétrica, que inclui a distribuição normal como caso especial e fornece flexibilidade em capturar uma ampla variedade de comportamentos não normais, por simplesmente adicionar um parâmetro que controla o grau de assimetria. A densidade marginal das quantidades observadas é encontrada e mostramos que tem forma fechada, de modo que inferências podem ser abordadas usando programas computacionais conhecidos (R, S-plus, Matlab) e técnicas de otimização padrão. Explorando propriedades estatísticas do modelo considerado implementando o algoritmo EM que fornece algumas vantagens sobre a maximização direta da função log-verossimilhança. Apresentamos também, para esta distribuição normal-assimétrica multivariada, vários resultados relacionados com a teoria da distribuição das formas quadráticas, transformações lineares, densidade marginal e condicionamento. Em um segundo estágio do trabalho, usando uma segunda versão de distribuiçào normal-assimétrica multivariada, os modelos lineares mistos normal assimétricos bayesianos são definidos e procedimentos relacionados com o método Monte Carlo via cadeias de Markov (MCMC) são apresentados fazendo da inferência bayesiana uma alternativa viável para tais modelos. Em ambos os casos, resultados de estudo de simulação e aplicações a conjuntos de dados reais são fornecidos mostrando que os critérios de informação padrão, tais como AIC, BIC e HQ podem ser usados para detectar afastamentos da normalidade (simetria). Finalmente, apresentamos métodos para estimação em modelos lineares mistos com erros nas variáveis, baseados na função escore corrigido de Nakamura (1990), simulação-extrapolação (SIMEX) de Stefanski e Cook (1995) e máxima verossimilhança. Um estudo de simulação comparando os métodos SIMEX e escore corrigido é apresentado.