Detalhes bibliográficos
Ano de defesa: |
2001 |
Autor(a) principal: |
Campos, Paulo Roberto de Araujo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/76/76131/tde-25092008-144909/
|
Resumo: |
O paradigma de sistemas de moléculas auto-replicantes é o modelo de quase-espécies, no qual as moléculas são representadas por seqüências binárias de tamanho L e o mecanismo de replicação é suposto imperfeito. Em particular, cada seqüência é gerada corretamente com probabilidade Q = qL, onde q é a probabilidade de cópia exata por dígito. Um dos resultados mais intrigantes no modelo para o relevo de replicação de pico único, no qual há apenas um tipo de molécula com vantagem seletiva a em relação aos outros tipos, é a observação de um limiar de erro a partir do qual toda informação biológica relevante é perdida. A transição de limiar de erro verificada para Qc = l /a pode ser visualizada como uma transição de fase do tipo ordem-desordem. Verificamos que a largura dessa transição decresce com L de acordo com L-1. Concluímos também que as grandezas físicas de interesse são bem descritas por meio de funções de escala. Elaboramos ainda uma versão estocástica (isto é, tamanho de população N finito) para o modelo de quase-espécies, no qual a dinâmica é descrita por uma cadeia de Markov. Mostramos que o tempo característico τ para o desaparecimento de seqüências mestras na população obedece uma relação de escala bem definida. A transição em nosso modelo é constatada através da divergência de τ em Qc no limite de N → ∞ ,sendo que a largura da transição decresce de acordo com N -1/2. Em nossa abordagem não utilizamos nenhuma definição arbitrária para o limiar de erro para população finita. Como solução para o problema da crise de informação associada ao limiar de erro estudamos o modelo de hiperciclos. Neste modelo, as macromoléculas se replicam com o auxílio de outros membros do hiperciclo por meio do mecanismo de catálise. Estudamos analiticamente a propagação de erro no hiperciclo e obtemos os diagramas de fases no espaço de parâmetros para vários tamanhos de hiperciclo n. Esses diagramas descrevem as regiões de estabilidade das diversas soluções de estado estacionário do sistema. Constatamos que para hiperciclos com n ≤ 4 existe um limiar de erro menor que aquele verificado no modelo de quase-espécies. Desde que o suporte catalítico realizado por uma molécula no hiperciclo pode ser considerado de fato um comportamento altruísta, modelos para evolução do altruísmo como, a teoria de seleção de grupos, têm sido utilizados no contexto de evolução pré-biótica. Aqui investigamos a evolução da produção de enzimas e os efeitos de sinergia utilizando esses conceitos. |