Problemas de alocação e precificação de itens

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Schouery, Rafael Crivellari Saliba
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45134/tde-25022014-112039/
Resumo: Nessa tese consideramos problemas de alocação e precificação de itens, onde temos um conjunto de itens e um conjunto de compradores interessados em tais itens. Nosso objetivo é escolher uma alocação de itens a compradores juntamente com uma precificação para tais itens para maximizar o lucro obtido, considerando o valor máximo que um comprador está disposto a pagar por um determinado item. Em particular, focamos em três problemas: o Problema da Compra Máxima, o Problema da Precificação Livre de Inveja e o Leilão de Anúncios de Segundo Preço. O Problema da Compra Máxima e o Problema da Precificação Livre de Inveja modelam o problema que empresas que vendem produtos ou serviços enfrentam na realidade, onde é necessário escolher corretamente os preços dos produtos ou serviços disponíveis para os clientes para obter um lucro interessante. Já o Leilão de Anúncios de Segundo Preço modela o problema enfrentado por empresas donas de ferramentas de busca que desejam vender espaço para anunciantes nos resultados das buscas dos usuários. Ambas as questões, tanto a precificação de produtos e serviços quanto a alocação de anunciantes em resultados de buscas, são de grande relevância econômica e, portanto, são interessantes de serem atacadas dos pontos de vista teórico e prático. Nosso foco nesse trabalho é considerar algoritmos de aproximação e algoritmos de programação inteira mista para os problemas mencionados, apresentando novos resultados superiores àqueles conhecidos previamente na literatura, bem como determinar a complexidade computacional destes problemas ou de alguns de seus casos particulares de interesse.