Detalhes bibliográficos
Ano de defesa: |
2009 |
Autor(a) principal: |
Carvalho, Elton José Figueiredo de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/43/43134/tde-15032010-135258/
|
Resumo: |
A obtenção de amostras de nanotubos de carbono monodispersas em diâmetro e quiralidade é uma etapa importante para sua aplicação nas diversas áreas de nanotecnologia. Um recente método publicado por Arnold e colaboradores consiste em solubilizar nanotubos em água com o auxílio de surfactantes e centrifugar a solução em um gradiente de densidade. Observa-se, por medidas absorção no infravermelho, que nanotubos de diâmetro maior se encontram na região de maior densidade e aqueles de menor diâmetro, na região de densidade mais baixa. Esse resultado é oposto ao que se esperaria da densidade de cilindros ocos, que deve diminuir quando o diâmetro aumenta. Neste trabalho buscamos explicar essa aparente discrepância através de um modelo em que os surfactantes utilizados no processo de seleção - dodecil sulfato de sódio e colato de sódio - podem ser atraídos para cavidade hidrofóbica do nanotubo e arrastar moléculas de água consigo, invertendo a relação entre densidade e diâmetro. Testamos esse modelo através de simulações de mecânica molecular e dinâmica molecular clássica. Mostramos que existe um diâmetro crítico, que depende do surfactante, a partir do qual ele passa a ter mais afinidade com o interior da cavidade do nanotubo que com sua superfície externa. Mostramos também a existência de um diâmetro ótimo, em que a afinidade do surfactante com o interior do nanotubo é máxima. Simulações de dinâmica molecular acusaram a existência de uma força que atrai moléculas de surfactante para o interior do tubo e lá as aprisiona. Moléculas de água aderidas ao surfactante também são arrastadas para o interior do tubo. Através de dinâmica molecular também notamos que mesmo em solução aquosa há preferência de surfactantes maiores em tubos maiores. Calculamos a densidade de nanotubos vazios, preenchidos somente com água e preenchidos com água e surfactante. Na ausência de uma camada de surfactante encapsulando os nanotubos, mostramos que não há separação por diâmetro em gradiente de densidade se os nanotubos estiverem preenchidos. A existência de uma camada de surfactante viabiliza a separação por diâmetro de nanotubos preenchidos e explica a distribuição crescente de diâmetros em função da densidade. |