Abordagem alternativa para cálculo regulatório de perdas não-técnicas do sistema de distribuição e técnicas de machine learning para detecção de fraude na baixa tensão.

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Pulz, Jônatas
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3143/tde-23032023-080022/
Resumo: As perdas não técnicas são um problema significativo em países subdesenvolvidos, decorrente, principalmente, de fraudes em medidores e furtos de energia. Para mitigá-las, as distribuidoras realizam inspeções em unidades consumidoras suspeitas. O custo operacional para se realizar essas inspeções é alto e só pode ser justificado por um retorno através da descoberta de fraudes. Para aumentar a precisão na descoberta de fraudes, modelos de machine learning podem ser utilizados. Este trabalho propõe modelos de detecção de fraudes utilizando os tipos de modelos mais atuais e que vem se destacando como bons classificadores. Além disso, este trabalho propõe uma metodologia de cálculo regulatório de perdas mais realista que leve em consideração esse rico banco de dados criado através das inspeções realizadas pelas distribuidoras e o compara com a metodologia regulatória atual numa área piloto da distribuidora Enel de São Paulo.