Geração de mapas de espessuras sintéticos por meio de redes generativas adversárias para o treinamento de redes neurais profundas para auxílio ao diagnóstico de glaucoma.

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Oliveira, Gabriel Ozeas de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3141/tde-01042021-085104/
Resumo: O glaucoma é o segundo causador de cegueira no mundo, atingindo estimadamente 76 milhões de pessoas em 2020. Devido a seu caráter irreversível, vários trabalhos de pesquisa na literatura apresentam métodos para o diagnóstico de glaucoma a fim de auxiliar na tomada de decisão do especialista. Alguns destes estudos empregam métodos de aprendizagem de máquina, apesar do lento e custoso processo de coleta de dados presente em várias áreas da medicina. Este trabalho apresentou uma análise sobre uso de redes generativas adversárias na geração de mapas de espessura RNFL (Retinal Nerve Fiber Layer) sintéticos para serem empregados no treinamento de classificadores para o diagnóstico de glaucoma. Especificamente, esta investigação tratou dos classificadores que utilizam redes neurais profundas e que necessitam de grande quantidade de dados para treinamento. Foram gerados mapas de espessura de RNFL sintéticos utilizando uma rede generativa adversária, criando 11 conjuntos de dados mistos com dados reais e dados sintéticos em diferentes proporções. Esses conjuntos de dados foram utilizados no treinamento de 8 redes neurais profundas para o auxílio ao diagnóstico de glaucoma. O desempenho dos classificadores foi medido através dos valores de AROC. Os melhores valores de AROC foram obtidos quando o conjunto de dados foi aumentado em 100 vezes, onde 50% dos dados eram sintéticos e 50% eram reais. O melhor valor de AROC foi 0,865, obtido pela rede VGG16. Tais resultados indicam que o uso de mapas de espessura de RNFL sintéticos gerados por redes generativas adversárias contribui para melhorar o desempenho de redes neurais profundas para o diagnóstico de glaucoma.