Detalhes bibliográficos
Ano de defesa: |
2013 |
Autor(a) principal: |
Rondina, Gustavo Garcia |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/76/76132/tde-17012014-161604/
|
Resumo: |
Neste trabalho é introduzido e avaliado um conjunto de novas ideias para aumentar a eficiência do método Basin-Hopping Monte Carlo (BHMC) aplicado à otimização global de clusters e nanopartículas, que resultou no método BHMC revisado. Dentro deste método, tomou-se o cuidado de manter as características fundamentais do método BHMC padrão, que consistem na transformação da superfície de energia potencial em um conjunto de basins de atração, e no emprego de amostragem de Monte Carlo utilizando o critério de Metropolis. As ideias por trás do método BHMC revisado incluem um grande conjunto de operadores locais e não locais construídos especificamente para clusters e nanopartículas e que permitem maior mobilidade sobre a superfície de energia potencial durante a busca pelo mínimo global, duas estratégias de seleção de operadores, e um operador de filtro estrutural para remover soluções não físicas. A eficiência do método apresentado foi avaliada através da sua aplicação a um grande número de clusters e nanopartículas de tamanhos variados, compreendendo sistemas descritos tanto por potenciais empíricos, quanto por primeiros princípios dentro do formalismo da teoria do funcional da densidade (DFT). Os sistemas investigados foram clusters de Lennard-Jones e Sutton-Chen contendo até 148 átomos, um conjunto de nanopartículas de Lennard-Jones com tamanhos variando entre 200 e 1500 átomos, clusters binários de Lennard-Jones com até 100 átomos, clusters binários de metais de transição (AgPd)55 descritos pelo potencial de Sutton-Chen, clusters de alumínio puros com até 30 átomos descritos por DFT, e clusters de alumínio com até 15 átomos dopados com um átomo de cobre, também descritos por DFT. Através da otimização global sem bias de todas essas partículas, o método BHMC revisado foi capaz de reproduzir com sucesso os mínimos globais putativos mais recentes disponíveis na literatura obtidos por diversas técnicas de otimização global, e também foi capaz de identificar mínimos globais previamente desconhecidos. Além disso, em comparação com o método BHMC padrão, o método RBHMC mostrou maior eficiência para muitos dos sistemas investigados. As ideias contidas na metodologia apresentada constituem uma ferramenta valiosa para auxiliar investigações teóricas visando uma melhor compreensão da estrutura atômica de clusters e nanopartículas. |