Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Pinto, Anderson Rogério Faia |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/18/18156/tde-25092017-115238/
|
Resumo: |
Esta tese integra dois problemas de áreas distintas e interdependentes intitulados de Sequenciamento Otimizado de Faturamento (SOF) e Sequenciamento Otimizado de Coleta (SOC). Abordados de forma disjunta pelos pesquisadores, o SOF refere-se a um problema de maximização do faturamento e o SOC consiste de uma variação do Order Batching and Sequencing Problem (OBSP). Fundamentados por pressupostos práticos e científicos, o SOF/SOC retratam o cotidiano dos processos de faturamento e picking de um típico Armazém de Distribuição (AM). No SOF a demanda é estocástica e os faturamentos ocorrem a partir de janelas de tempo variáveis ajustadas para evitar o tardiness mediante a priorização das datas de atendimento pela regra Earliest Due Date (EDD). No SOC o picking é manual e enquadra-se na categoria picker-to-parts (low level) com pick-and-sort utilizando um trolley que é transportado pelo operador ao longo das ruas do AM. Neste contexto, esta tese tem como objetivo desenvolver uma ferramenta de gestão que integre e apresente soluções otimizadas para o SOF/SOC. A perspectiva de integração do SOF/SOC dar-se-á mediante à formulação de dois Algoritmos Genéticos (AGs) nomeados de AG-SOF e AG-SOC. Assim, o enfoque desta pesquisa está na avaliação da eficácia prática do AG-SOF/AG-SOC em resolver problemas reais do SOF/SOC. A eficácia do AG-SOF é comparada à um Algoritmo Guloso Iterativo (AI-SOF) enquanto que a predileção pelo AG-SOC é justificada pela natureza NP-hard do SOC. As experimentações para problemas de diferentes níveis de complexidade demonstraram que os algoritmos satisfazem todas as regras, restrições e variáveis decisórias obtendo soluções de qualidade satisfatória para qualquer categoria do SOF/SOC. O AISOF/ AG-SOF lidam com as restrições de estoque e as possibilidades de faturar pedidos parciais para maximizar o Faturamento Total (FT). Apesar de obterem soluções com a mesma qualidade, o AI-SOF tem desempenho superior ao AG-SOF que é, em termos de Tempo de Processamento Computacional (TPC), limitado às categorias de médio porte do SOF. O AG-SOC é composto pela iteração de dois AGs (AGLOTE e AGPCV) que minimizam o Custo Total das Operações de Picking (CT). Logo, o AGLOTE agrupa os SKUs (Stock Keeping Units) dos diferentes pedidos em múltiplos lotes pela restrição de carga dos trolleys de forma a reduzir o Número de Viagens de Coleta (NVC) e define a sequência de coleta por meio de lotes prioritários para evitar o Atraso no Atendimento dos Pedidos (AAP). O AGPCV faz a roteirização dos lotes dentro do AM de modo que impeça a ocorrência de avarias aos SKUs frágeis e minimize a Distância Total das Rotas (DTR) e o Tempo Total de Picking (TTP). Evidenciou-se que para problemas de complexidade superior os lotes são mais homogêneos, nos quais o Desvio Padrão é pequeno e o Coeficiente de Variação é de 11,22% a 25,20% para a DTR. Para ambientes reais em que se utiliza janelas de tempo e logs de processamentos para lotes off-lines) a combinação do AI-SOF/AGSOC provê soluções otimizadas em tempo e qualidade satisfatória ao SOF/SOC. Em suma, esta pesquisa foi além das abordagens existentes para preencher um gap na literatura e prover uma importante contribuição à prática da otimização do SOF/SOC. É possível conclui que a integração do AI-SOF/AGSOC é capaz de maximizar o faturamento e melhorar a produtividade de forma a minimizar os tempos e custos operacionais de picking do AM. |