Introdução às Anomalias Conformes e os Teoremas C & F

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Nagaoka, Gabriel Nicolaz
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-04052018-140729/
Resumo: As ideias fundamentais sobre entropia de emaranhamento e fluxos de renormalização são expostas, assim como uma introdução a CFTs e sua ligacão com a estrutura do espaco de parâmetros. A anomalia de traço é calculada em uma abordagem semi-clássica usando o método de heat kernel\" e regularização por função zeta . Mostramos que os coeficientes de Seeley-DeWitt são responsáveis pela quebra de simetria conforme em um espaço-tempo curvo de dimensão par, com isso alcançamos uma definição geométrica para as cargas centrais. A inexistência de anomalias no caso de dimensões ímpares também e mostrado. O C-theorem\", que prova a monotonicidade das cargas centrais sob o fluxo de renormalização, é demonstrado como feito por Zamolodchikov por meio de uma abordagem euclideana assumindo unitariedade, positividade por reflexão e condições de renormalizabilidade. A análise feita por Cardy também e demonstrada, nela considera-se os mesmos ingredientes. Por fim, a prova tecida por Casini & Huerta é demonstrada com detalhes, essa prova utiliza das propriedades de strong subadditivity da entropia de emaranhamento, unitariedade e invariância sob o grupo de Poincaré. Com isso, uma conexão com informação quântica é feita naturalmente. No último capítulo generalizamos o conceito de carga central para dimensões ímpares as definindo como o termo universal na entropia de emarahamento de uma esfera. As considerações geométricas feitas para provar o C-theorem\" são estendidas para um espaço-tempo de Minkowski com três dimensões. Como consequência temos a prova do F-theorem\" que é o analogo em três dimensões do C-theorem\".