Otimização de portfólio: uma análise através de técnicas de Reinforcement Learning e Autoencoders

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Melo, Fernando Danilo de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/100/100132/tde-25112022-170424/
Resumo: Com o desenvolvimento dos algoritmos de Reinforcement Learning nos últimos anos, houve um aumento no número de estudos relacionados à negociação de ativos e otimização de portfólio. Embora trabalhos com dados de análise técnica e fundamentalista ganharam notoriedade nos últimos anos, poucos incluem ambos. Outro tema pouco explorado é o impacto do uso de Autoencoders para extrair variáveis e conexões entre os dados. Buscando explorar esses pontos e entender o impacto da introdução dessas variáveis, propomos um sistema inteligente para otimizar um portfólio por meio de análises de dados técnicos e fundamentalistas, bem como as variáveis geradas utilizando Autoencoders . Avaliamos o modelo em dois mercados distintos (o mercado Norte Americano de Ações e o de Criptoativos) em mais de 10 ativos, buscando avaliar o desempenho do agente em relação a modelos tradicionais. Posteriormente, esta avaliação permitiu-nos entender o impacto dos dados dos ativos em seu desempenho e como o agente se comporta em um mercado tradicional, como o de ações, e em mercados menos regulamentados, como o de criptomoedas