Ressonâncias escalares: Um modelo para o Kappa

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Magalhães, Patricia Camargo
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/43/43134/tde-05032009-112030/
Resumo: O objetivo principal desta dissertação é estudar a ressonância $\\k$, um méson escalar ainda hoje bastante controverso na comunidade científica. Estudamos o espalhamento elástico $K\\pi$, pois é neste subsistema que o $\\k$ se manifesta como um estado intermediário. A partir de uma lagrangiana efetiva quiral $SU(3)\\times SU(3)$, envolvendo termos de contato e ressonâncias, calculamos a amplitude $K\\pi$ projetada no canal de isospin $1/2$ e em seguida a unitarizamos por meio de {\\it loops} mesônicos. Investigamos os pólos físicos da amplitude, dados pelos zeros do seu denominador que se encontram na segunda superfície de Riemann. Esses zeros podem ser obtidos numericamente, mas a análise estrita desta solução não fornece informações a respeito da dinâmica que produz os pólos. Como alternativa, uma descrição qualitativa dos pólos foi obtida considerando o limite de $SU(2) \\Leftrightarrow M_\\p=0$ e a aproximação da matriz K, que corresponde a unitarizar a amplitude com {\\it loops} de $K\\p$ na camada de massa. Essas simplificações reduzem o denominador da amplitude a um polinômio de segundo grau, que dá origem a dois pólos físicos, posteriormente identificados como sendo o $K^*_0(1430)$ e o $\\k$. Este modelo simplificado permite uma boa interpretação da origem dinâmica dos pólos. O $\\k$ mostrou-se estável na variação dos acoplamentos da ressonância explícita, o que indica que ele é produzido pelo diagrama de contato. Já a ressonância identificada como o $K^*_0(1430)$ varia de um estado ligado a um pólo não físico, dependendo dos valores atribuídos aos parâmetros da ressonância, o que sugere fortemente que a natureza destes pólos é distinta. Esses diferentes comportamentos dinâmicos também foram observados no programa numérico, indicando que a essência dos pólos foi mantida no modelo simplificado. % Com o programa numérico obtivemos a posição do pólo do $\\k$ em $(0.7505 \\pm 0.0010) - i\\, (0.2363 \\pm 0.0023)\\;$GeV, o que está em pleno acordo com diversos modelos quirais muito mais complicados.