Estratégias para aplicação de políticas parciais com motivação intrínseca.

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Beirigo, Rafael Lemes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/3/3141/tde-12102015-140550/
Resumo: As técnicas de Aprendizado por Reforço permitem a solução de um problema através da escolha de ações que maximizem valores de recompensas recebidas que refletem a qualidade das ações tomadas pelo agente em um processo de tentativa e erro. Em problemas com estrutura hierárquica, a solução final depende do encadeamento de soluções para subproblemas aí presentes, sendo frequente a repetição de subproblemas nesse encadeamento. Nesses casos, a utilização de políticas parciais permite o aprendizado e armazenamento das soluções individuais para cada subproblema, que podem então ser utilizadas múltiplas vezes na composição de uma solução completa para o problema final, acelerando o aprendizado. Apesar de vantajosa, a utilização de políticas parciais necessita de definições por parte do projetista, o que representa uma sobrecarga. Para contornar esse problema, foram propostas técnicas de descoberta automática de políticas parciais, dentre as quais a utilização de motivação intrínseca se destaca por permitir ao agente aprender soluções de subproblemas úteis na solução do problema final sem a necessidade de se definir manualmente novas recompensas para esses subproblemas individualmente. Apesar de promissora, essa proposta utiliza um conjunto de componentes de aprendizado que ainda carece de investigação aprofundada acerca dos impactos individual e coletivo de cada componente, notadamente a aplicação das políticas parciais durante o aprendizado. Nesta dissertação são propostas duas abordagens para a aplicação de políticas parciais no Aprendizado por Reforço com Motivação Intrínseca: (i) armazenamento das políticas parciais em aplicação pelo agente e (ii) exploração interna à aplicação das políticas parciais. O impacto das propostas no desempenho de aprendizado é avaliado experimentalmente em um domínio com forte caracterização hierárquica.