Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Sousa, Celso Andre Rodrigues de |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08122017-102557/
|
Resumo: |
Graph-based semi-supervised learning (SSL) algorithms have been widely studied in the last few years. Most of these algorithms were designed from unconstrained optimization problems using a Laplacian regularizer term as smoothness functional in an attempt to reflect the intrinsic geometric structure of the datas marginal distribution. Although a number of recent research papers are still focusing on unconstrained methods for graph-based SSL, a recent statistical analysis showed that many of these algorithms may be unstable on transductive regression. Therefore, we focus on providing new constrained methods for graph-based SSL. We begin by analyzing the regularization framework of existing unconstrained methods. Then, we incorporate two normalization constraints into the optimization problem of three of these methods. We show that the proposed optimization problems have closed-form solution. By generalizing one of these constraints to any distribution, we provide generalized methods for constrained graph-based SSL. The proposed methods have a more flexible regularization framework than the corresponding unconstrained methods. More precisely, our methods can deal with any graph Laplacian and use higher order regularization, which is effective on general SSL taks. In order to show the effectiveness of the proposed methods, we provide comprehensive experimental analyses. Specifically, our experiments are subdivided into two parts. In the first part, we evaluate existing graph-based SSL algorithms on time series data to find their weaknesses. In the second part, we evaluate the proposed constrained methods against six state-of-the-art graph-based SSL algorithms on benchmark data sets. Since the widely used best case analysis may hide useful information concerning the SSL algorithms performance with respect to parameter selection, we used recently proposed empirical evaluation models to evaluate our results. Our results show that our methods outperforms the competing methods on most parameter settings and graph construction methods. However, we found a few experimental settings in which our methods showed poor performance. In order to facilitate the reproduction of our results, the source codes, data sets, and experimental results are freely available. |