Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Leiva, Rosalía Taboada |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55134/tde-01092022-103108/
|
Resumo: |
A modelagem dos fenômenos físicos melhorou bastante nos últimos anos, principalmente devido ao desenvolvimento contínuo de novas ferramentas matemáticas (numéricas e analíticas). Hoje em dia, a simulação numérica de grande parte do trabalho experimental é uma demanda e, o objetivo é geralmente a otimização do processo e a redução de custos. Um caso clássico é o estudo de escoamentos de fluidos e mecânica dos sólidos, onde a modelagem numérica desempenha um papel fundamental. Nas últimas décadas, muita atenção foi dada à modelagem fracionária, onde a derivada de ordem inteira típica é substituída por uma não-inteira, levando a uma definição mais geral de derivada e a uma definição mais geral de (sistemas de) equações diferenciais. Neste trabalho, estamos interessados na solução numérica de equações de modelagem constitutivas que usam funções resultantes do cálculo fracionário, para modelar materiais viscoelásticos. Portanto, neste trabalho, começamos por mostrar a conexão entre os modelos de Maxwell viscoelásticos clássicos e fracionários, apresentando a teoria básica por trás dessas equações constitutivas. Em seguida desenvolvemos novos modelos generalizados que permitem fazer uma boa modelagem de diferentes materiais viscoelásticos, mas que, não apresentam os problemas de núcleos singulares encontrados nos modelos fracionários (os núcleos singulares representam um problema na implementação numérica dos modelos). Os novos modelos são implementados em códigos numéricos gerais, mais particularmente, no código HiG-Flow. A implementação numérica é verificada desenvolvendo novas soluções analíticas e comparando as soluções numéricas mais complexas com resultados de referência da literatura. |