Detalhes bibliográficos
Ano de defesa: |
2007 |
Autor(a) principal: |
Arcoverde, João Marcelo Azevedo |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/55/55134/tde-15062007-143252/
|
Resumo: |
Apesar dos processos de recuperação e filtragem de informação sempre terem usado técnicas básicas de Processamento de Linguagem Natural (PLN) no suporte à estruturação de documentos, ainda são poucas as indicações sobre os avanços relacionados à utilização de técnicas mais sofisticadas de PLN que justifiquem o custo de sua utilização nestes processos, em comparação com as abordagens tradicionais. Este trabalho investiga algumas evidências que fundamentam a hipótese de que a aplicação de métodos que utilizam conhecimento linguístico é viável, demarcando importantes contribuições para o aumento de sua eficiência em adição aos métodos estatásticos tradicionais. É proposto um modelo de representação de texto fundamentado em sintagmas nominais, cuja representatividade de seus descritores é calculada utilizando-se o conceito de evidência, apoiado em métodos estatísticos. Filtros induzidos a partir desse modelo são utilizados para classificar os documentos recuperados analisando-se a relevância implícita no perfil do usuário. O aumento da precisão (e, portanto, da eficácia) em sistemas de Recuperação de Informação, conseqüência da pós-filtragem seletiva de informações, demonstra uma clara evidência de como o uso de técnicas de PLN pode auxiliar a categorização de textos, abrindo reais possibilidades para o aprimoramento do modelo apresentado |