Detalhes bibliográficos
Ano de defesa: |
2012 |
Autor(a) principal: |
Batalhão, Tiago Barbin |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
http://www.teses.usp.br/teses/disponiveis/76/76131/tde-23102012-091503/
|
Resumo: |
Realizamos nesse trabalho um tratamento abrangente da interação entre um sistema quântico e o meio ambiente modelado como um conjunto de osciladores harmônicos. Partimos para isso de um tratamento prévio de redes de osciladores harmônicos quânticos dissipativos. Utilizando a função característica, transformamos a equação de von Neumann em uma equação diferencial, e explorando a sua linearidade, essa é transformada em uma equação vetorial, cuja resolução é computacionalmente eficiente. Nosso formalismo, que parte de uma rede de osciladores harmônicos, não necessariamente dividida entre sistema e meio ambiente, permite que se contorne a necessidade da hipótese de acoplamento súbito sistema-reservatório para o tratamento exato da evolução do sistema. Em seguida, mostramos que essa evolução pode ser sempre descrita por uma equação mestra na forma usual de Lindblad, embora os coeficientes que a definem possam ser dependentes do tempo. Isso abre novas possibilidades para a dinâmica do sistema, e leva a efeitos que podem ser classificados de não-Markovianos, embora sejam descritos por uma equação mestra completamente local no tempo. Ressaltamos que, por ser baseado em uma solução exata, o método pode ser aplicado para qualquer intensidade de acoplamento, e é consideravelmente mais simples do que outros métodos disponíveis para esse fim, como os baseados em integrais de trajetória. Por fim, utilizamos simulações computacionais para explorar a validade das aproximações de ondas girantes e de Born-Markov, e os fenômenos que podem ser observados nos regimes em que elas deixam de ser válidas. |