Difeomorfismos do plano com número de rotação de fins primos irracional

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Barboza, Diego Pereira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/45/45132/tde-23042019-093022/
Resumo: O principal objetivo desta tese é estudar o número de rotação de fins primos de homeomorfismos planares que pertencem a uma classe de homeomorfismos H. Tal número de rotação é devido à Carathéordory e semelhante à teoria de Poincaré para homeomorfismos do crculo. Para todo irracional (0, 1), denotando por (h, U ) o número de rotação de fins primos de h H em U , com U a bacia de repulsão do infinito, construiremos um homeomorfismo h H satisfazendo (h, U ) = e que possui uma sela periódica com intersecção homoclnica transversal em U . Além disso, quando h é de classe C 2 e det(Dh| x ) < 1 em todo ponto, mostraremos que existe ponto periódico acessvel em U se, e somente se, (h, U ) é racional. Também será provado que, quando h é uma ferradura de Smale, o número de rotação (h, U ) é racional. Finalizando, provaremos que se for possvel a existência de um difeomorfismo C r , r 1, em um conjunto genérico a ser definido, com U = W u (p) para p uma sela homoclnica com intersecção transversal e tal que o número de rotação (h, U ) é irracional, necessariamente, h deve satisfazer uma propriedade que não é válida para ferraduras de Smale.